On dually flat $(\alpha,\beta)$-metrics
نویسنده
چکیده
The dual flatness for Riemannian metrics in information geometry has been extended to Finsler metrics. The aim of this paper is to study the dual flatness of the so-called (α, β)-metrics in Finsler geometry. By doing some special deformations, we will show that the dual flatness of an (α, β)-metric always arises from that of some Riemannian metric in dimensional n ≥ 3.
منابع مشابه
On dually flat general $(\alpha,\beta)$-metrics
Based on the previous research, in this paper we study the dual flatness of a special class of Finsler metrics called general (α, β)-metrics, which is defined by a Riemannian metric α and a 1-form β. By using a new kind of deformation technique, we construct many non-trivial explicit dually flat general (α, β)-metrics.
متن کاملOn locally dually flat general (α, β)-metrics
Locally flat Finsler metrics arise from information geometry. Some speciel locally dually flat Finsler metrics had been studied in Cheng et al. [3] and Xia [4] respectively. As we konw, a new class of Finsler metrics called general (α, β)-metrics are introduced, which are defined by a Riemannian metrics α and 1-form β. These metrics generalize (α, β)-metrics naturally. In this paper, we give a ...
متن کاملOn dually flat Randers metrics
The notion of dually flat Finsler metrics arise from information geometry. In this paper, we will study a special class of Finsler metrics called Randers metrics to be dually flat. A simple characterization is provided and some non-trivial explicit examples are constructed. In particular, We will show that the dual flatness of a Randers metric always arises from that of some Riemannian metric b...
متن کاملCharacterization of locally dually flat first approximate Matsumoto metric
The concept of locally dually flat Finsler metrics originate from information geometry. As we know, (α, β)-metrics defined by a Riemannian metric α and an 1-form β, represent an important class of Finsler metrics, which contains the Matsumoto metric. In this paper, we study and characterize locally dually flat first approximation of the Matsumoto metric with isotropic S-curvature, which is not ...
متن کاملStatistical manifolds from optimal transport
Divergences, also known as contrast functions, are distance-like quantities defined on manifolds of non-negative or probability measures and they arise in various theoretical and applied problems. Using ideas in optimal transport, we introduce and study a parameterized family of $L^{(\pm \alpha)}$-divergences which includes the Bregman divergence corresponding to the Euclidean quadratic cost, a...
متن کامل